Home
Class 10
MATHS
5x-3y+7=0, 3x+2y+3=0 का कितना हल होगा?...

`5x-3y+7=0, 3x+2y+3=0` का कितना हल होगा?

Promotional Banner

Similar Questions

Explore conceptually related problems

3x + 2y = 0, x + 3y = 7

If x + y = 7 and xy = 10, then the value of x^3+y^3 is: यदि x + y = 7 तथा xy = 10 है, तो x^3+y^3 का मान क्या होगा ?

3x-4y=-7,5x-2y=0

Prove that the three lines 5x+3y-7=0, 3x-4y=10, and x+2y=0 meet in a point.

The equation of straight line belonging to both the families of lines (x-y+1)+lambda_1(2x-y-2)=0 and (5x+3y-2)+lambda_2(3x-y-4)=0 where lambda_1, lambda_2 are arbitrary numbers is (A) 5x -2y -7=0 (B) 2x+ 5y - 7= 0 (C) 5x + 2y -7 =0 (D) 2x- 5y- 7= 0

The equation of straight line belonging to both the families of lines (x-y+1)+lambda_1(2x-y-2)=0 and (5x+3y-2)+lambda_2(3x-y-4)=0 where lambda_1, lambda_2 are arbitrary numbers is (A) 5x -2y -7=0 (B) 2x+ 5y - 7= 0 (C) 5x + 2y -7 =0 (D) 2x- 5y- 7= 0

The equation of straight line belonging to both the families of lines (x-y+1)+lambda_1(2x-y-2)=0 and (5x+3y-2)+lambda_2(3x-y-4)=0 where lambda_1, lambda_2 are arbitrary numbers is (A) 5x -2y -7=0 (B) 2x+ 5y - 7= 0 (C) 5x + 2y -7 =0 (D) 2x- 5y- 7= 0

The equation of straight line belonging to both the families of lines (x-y+1)+lambda_1(2x-y-2)=0 and (5x+3y-2)+lambda_2(3x-y-4)=0 where lambda_1, lambda_2 are arbitrary numbers is (A) 5x -2y -7=0 (B) 2x+ 5y - 7= 0 (C) 5x + 2y -7 =0 (D) 2x- 5y- 7= 0

If x+3y+2=0 then the value of x^3+27y^3+ 8-18xy is: यदि x+3y+2=0 है, तो x^3+27y^3+ 8-18xy का मान क्या होगा ?