Home
Class 12
MATHS
Let ab=1, then the minimum value of (1)/...

Let `ab=1`, then the minimum value of `(1)/(a^(4))+(1)/(4b^(4))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If ab gt 0 , then the minimum value of (a+b)((1)/(a)+(1)/(b)) is

Minimum value of ((1+x^(2))(1+x^(6)))/(x^(4)) is

Given that a and b are positive real numbers with a+b=4, the minimum value of (1+(1)/(a))(1+(1)/(b)), is

Let x^(2)-3x+p=0 has two positive roots a and b ,then minimum value if ((4)/(a)+(1)/(b)) is,

Let x^2-3x+p=0 has two positive roots a and b, the minimum value of ((4)/(a)+(1)/(b)) is ____________.

Let AB and C be the angles of Delta ABC, then the minimum value of sin^(2)((A)/(2))+sin^(2)((B)/(2))+sin^(2)((C)/(2))is(1)1 (2) (3)/(4)(3)(1)/(2)(4)(1)/(4)

The minimum value of 4^(x) + 4^(1-x), x in R is :

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals