Home
Class 11
MATHS
Prove that: (cos(pi+x)cos(-x))/(sin(pi-x...

Prove that: `(cos(pi+x)cos(-x))/(sin(pi-x)cospi/2+x)=cot^2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^2x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x)} =cot^2x

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x) = cot^2x

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi)/(2)+x)=cot^(2)x

(cos (pi+x).cos(-x))/(sin(pi-x).cos(pi/2+x)) = cot^2x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that: (a) (cos(pi+x) cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x (b) cos((3pi)/2 + x)cos(2pi+x){cot ((3pi)/2-x)+cot(2pi+x)}=1