Home
Class 12
MATHS
Find the inverse of the function f(x) = ...

Find the inverse of the function `f(x) = In (x^2 + 3x + 1), x in [1, 3]` and assuming it to be an onto function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of the function f(x) = (x-3)^(3)

Find the inverse of the function f(x)=(x^4+x^2+1)/x^2

Find the inverse of the following function: f(x)=log_e(x^2+3x+1), x in [1,3]

Find the inverse of the function: f(x)={x^3-1, ,x<2x^2+3,xgeq2

Find the inverse of the function: f(x)={x^3-1, ,x<2 x^2+3,xgeq2

Find the inverse of the function: f(x)={x^3-1, ,x<2x^2+3,xgeq2

Find the inverse of the following function: f(x)=sin^(-1)(x/3), x in [-3,3]

Find the inverse function of the function f(x) = 2^(x(x - 1)) (x gt 0) .

Find the inverse of the function: f(x)={(x^3-1, ,x<2), (x^2+3,xgeq2)}