Home
Class 10
MATHS
If x=rsinAcosC ,\ \ y=rsinAsinC and z=rc...

If `x=rsinAcosC ,\ \ y=rsinAsinC` and `z=rcosA` , prove that `r^2=x^2+y^2+z^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x , y , z are in continued proportion, prove that : ((x + y)^(2))/((y + z)^(2)) = (x)/(z) .

if x , y and z are in continued proportion, prove that : x^(2) - y^(2) : x^(2) + y^(2) = x - z : x + z .

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^2,zx,z+x),(x^2y^2,xy,x+y):}|=0

If x, y, z,w in are in G.P., prove that (xy-wz)/(y^2-z^2)=(x+z)/y .

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .

using the properties of determinants prove that |{:(1,x+y,x^2+y^2),(1,y+z,y^2+z^2),(1,z+x,z^2+x^2):}|=(x-y)(y-z)(z-x)

Using properties of determinants, prove that |[2y,y-z-x,2y],[2z,2z, z-x-y],[ x-y-z, 2x,2x]|=(x+y+z)^3