Home
Class 12
MATHS
If the curves y = x^2 + px + q and y = ...

If the curves `y = x^2 + px + q` and `y = rx - x^2` touches each other at (1,0) then the value of `p^2 + q^2 + r^2` equals (A) 9 (B) 11 (C) 14 (D) 18

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curve y=px^(2)+qx+r passes through the point (1,2) and the line y=x touches it at the origin,then the values of p,q and r are

If the curve y=px^(2)+qx+r passes through the point (1,2) and the line y=x touches it at the origin,then the values of p,q and r are

If the straight line y= 4x -5 touches the curve y^(2) = px^(3) + q at (2, 3), then the values of p and q are-

If the circles x^(2)+y^(2)=9 and x^(2)+y^(2)+8y+C=0 touch each other,then c is equal to

If the circles x^2+y^2=9 and x^2+y^2+8y+c=0 touch each other, then c is equal to:

If the curves C_(1):y=(In x)/(x) and C_(2):y=lambda x^(2) (where lambda is constant) touches each other,then the value of lambda is

Find the value of a,b,c such that curves y=x^(2)+ax+bandy=cx-x^(2) will touch each other at the point (1,0)

If the circle x ^(2) +y^(2) -4rx- 2ry+4r^(2)=0 and x^(2) +y^(2) =25 touch each other, then r satisfies-