Home
Class 11
MATHS
The sequence a1,a2,a3,a4..... satisfies ...

The sequence `a_1,a_2,a_3,a_4`..... satisfies `a_1 =1, a_2 =2 and a_(n+2) = 2/a_(n+1) + a_n, n=1,2,3`.... If `2^(lambda) a_(2012) = (2011!)/(1005!)^2` then `lambda` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

A sequence of no. a_1,a_2,a_3 ..... satisfies the relation a_n=a_(n-1)+a_(n-2) for nge2 . Find a_4 if a_1=a_2=1 .

A sequence of numbers a_0,a_1,a_2,a_3 , ........ satisfies the relation a_n^2-a_(n-1)a_(n+1)=(-1)^n . Find a_3 , given a_0=1 and a_1=3 .

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2,)n > 2. Find (a_(n+1))/(a_n) , for n=5.

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2,)n > 2. Find (a_(n+1))/(a_n),for n=5.

Let a sequence be defined by a_1=1,a_2=1 and a_n=a_(n-1)+a_(n-2) for all n >2, Find (a_(n+1))/(a_n) for n=1,2,3, 4.

The Fibonacci sequence is defined by 1 = a_1= a_2 and a_n=a_(n-1)+a_(n-2) , n>2 . Find (a_(n+1))/a_n , for n = 1, 2, 3, 4, 5