Home
Class 12
MATHS
Find the value of a so that the volume o...

Find the value of `a` so that the volume of the parallelepiped formed by vectors ` hat i+a hat j+k , hat j+a hat ka n da hat i+ hat k` becomes minimum.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of a so that the volume of the parallelepiped formed by vectors hat i+a hat j+k , hat j+a hat k and a hat i+ hat k becomes minimum.

Find the value of a so that the volume of the parallelepiped formed by vectors hat i+ahat j+k,hat j+ahat k and ahat i+hat k becomes minimum.

The value of a so that the volume of parallelepiped formed by hat i+a hat j+ hat k , hat j+a hat k and a hat i+ hat k is minimum is a. -3 b. 3 c. 1//sqrt(3) d. sqrt(3)

The value of a so that the volume of parallelepiped formed by hat i+a hat j+ hat k , hat j+a hat k and a hat i+ hat k is minimum is a. -3 b. 3 c. 1//sqrt(3) d. sqrt(3)

Find the area of the parallelogram determined by the vectors: hat i-3 hat j+ hat k\ a n d\ hat i+ hat j+ hat kdot

Find the volume of a parallelepiped whose edges are given by -3 hat i+7 hat j-5 hat k ,-5 hat i+7 hat j- 3 hat ka n d7 hat i-5 hat j-3 hat kdot

The volume (in cubic units) of the parallelopiped whose edges are represented by the vectors hat i + hat j , hat j + hat k and hat k + hat i is

Find the angle between the vectors hat i - 2 hat j + 3 hat k and 3 hat i - 2 hat j + hat k .

The angle between the vectors (hat i + hat j + hat k) and ( hat i - hat j -hat k) is