Home
Class 12
MATHS
If f(x)=1+x+int1^x(ln^2t+2lnt) dt then f...

If `f(x)=1+x+int_1^x(ln^2t+2lnt) dt` then f(x) increases in

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1+x+int_(1)^(x)(ln^(2)t+2ln t)dt then f(x) increases in

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Find the value of the function f(x)=1+x+int_1^x((lnt)^2+2lnt) dt where f'(x) vanishes

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Find the value of the function f(x)=1+x+int_(1)^(x)((ln t)^(2)+2ln t)dt where f'(x) vanishes

If f(x) = int_(x)^(x^(2)) t^(2)lnt then find f'(e)

If f(x) = int_(x)^(x^(2)) t^(2)lnt then find f'(e)

Let F(x) = f(x) + f(1/x) , where , f(x) = int_1^x (log t)/(1 + t) dt . Then F(e ) equals :