Home
Class 12
MATHS
If f(x)=int1^x(lnt)/(1+t)dt where x>0, t...

If `f(x)=int_1^x(lnt)/(1+t)dt` where x>0, then the values of of x satisfying the equation `f(x)+f(1/x)=2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = int_1^x lnt/(1+t) dt where x>0 then the values of x satisfying the equation f(x)+f(1/x) = 2 are (i)2 (ii)e (iii)e^(-2) (iv)e^(2)

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If f(x)=int_(0)^(1)e^(|t-x|)dt where (0<=x<=1) then maximum value of f(x) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.