Home
Class 11
MATHS
" (ii) "((d^(2)y)/(dx^(2))+((dy)/(dx))^(...

" (ii) "((d^(2)y)/(dx^(2))+((dy)/(dx))^(3))^(6/5)=6y

Promotional Banner

Similar Questions

Explore conceptually related problems

The order and degree of the differential equation ((d^(2)y)/(dx^(2)) + ((dy)/(dx))^(3))^(6//5) = 6y is

The order and degree of the differential equation " ((d^(2)y)/(dx^(2))+((dy)/(dx))^(3))^((6)/(5))=6y is

Find the order and degree of ((d^(2)y)/(dx^(2))+((dy)/(dx))^(3))^((6)/(5))=6y

Find the order and degree of the following D.E's (i) (d^(2)y)/(dx^(2)) + 2((dy)/(dx))^(2) + 5y = 0 (ii) 2(d^(2)y)/(dx^(2)) = (5+(dy)/(dx))^((5)/(3)) (iii) 1+((d^(2)y)/(dx^(2)))^(2) = [2+((dy)/(dx))^(2)]^((3//2)) (iv) [(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)]^((6/(5)) = 6y (v) [((dy)/(dx))^(2) + (d^(2)y)/(dx^(2))]^((7)/(3)) = (d^(3y))/(dx^(3)) (vi) [((dy)/(dx))^((1)/(2)) + ((d^(2)y)/(dx^(2)))^((1)/(2))]^((1)/(4)) = 0 (vii) (d^(2)y)/(dx^(2)) + p^(2)y = 0 (viii) ((d^(3)y)/(dx^(3)))^(2) -3((dy)/(dx))^(2) - e^(x) = 4

Find the order and degree of the differential equation [(d^(2)y)/(dx^(2)) + ((dy)/(dx))^(3)]^(6"/"5) = 6y .

The degree of differential equation (d^(2)y)/(dx^(2))+((dy)/(dx))^(3)+6y^(5)=0 is

The degree of differential equation (d^(2)y)/(dx^(2))+((dy)/(dx))^(3)+6y^(5)=0 is

For each of the differential equations given below, indicate its order and degree(if defined). (i) (d^(2)y)/(dx^(2))+ 5x((dy)/(dx))^(2) - 6y = log x (ii) ((dy)/(dx))^(3) - 4((dy)/(dx))^(2) + 7y = sin x (iii) (d^(4)y)/(dx^(4)) - sin ((d^(3)y)/(dx^(3)) = 0