Home
Class 12
MATHS
sin{"Sin"^(-1)1/2+"Cos"^(-1)1/2}=...

`sin{"Sin"^(-1)1/2+"Cos"^(-1)1/2}=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin{sin^-1((1)/(2))+cos^(-1)x}=1

Find the value of the following: sin(sin^(-1)frac[1][2]+cos^(-1)frac[1][2])

Sin^(-1)(2cos^(2)x-1)+Cos^(-1)(1-2sin^(2)x)=

cos^(2)(sin^(-1)(1/6))+sin^(2)(cos^(-1)(1/2))

" (2) "sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)" is equal to "

Evaluate sin^(-1)[cos(sin^(-1)1/2)]

cos [cos^(-1)(-1/2)-sin^(-1)(1/2)]

Cos[Sin^(-1)(2cos^(2)theta-1)+Cos^(-1)(1-2sin^(2)theta)]=

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2