Home
Class 12
MATHS
Let f(x)=(1)/(sqrt(18-x^(2))) What is ...

Let `f(x)=(1)/(sqrt(18-x^(2)))`
What is the value of `lim_(xto3) (\f(x)-f(3))/(x-3)`?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(sqrt(18-x^(2))) The value of Lt_(x rarr3)(f(x)-f(3))/(x-3) is

Let f(x) = 1 /(sqrt( 18 - x^2) The value of Lt_(x -> 3) (f(x)-f(3)) / (x-3) is

Let f(x)= (sqrt(x+3))/(x+1) , then the value of lim_(x rarr -3^-) f(x) is :

If f(3)=6andf'(3)=2 , find the value of lim_(xto3)(xf(3)-3f(x))/(x-3) .

If F(x)=sqrt(9-x^(2)) , then what is lim_(xto1) (F(x)-F(1))/(x-1) equal to?

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.