Home
Class 12
MATHS
Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sq...

Sum of `1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/(sqrt(11)+sqrt(14))+..to n` terms= (A) `n/(sqrt(3n+2)-sqrt(2))` (B) `1/3 (sqrt(2)-sqrt(3n+2)` (C) n/(sqrt(3n+2)+sqrt(2))` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+ n terms is equal to a. ((sqrt(3n +2))-sqrt(2))/(3) b.(n)/(sqrt(2+3n)+sqrt(2)) c.less than n d.less than sqrt(n/3)

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) , then N+2 equals

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

[ If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) then N equals [ (A) 1, (B) 2sqrt(2)-1 (C) (sqrt(5))/(2), (D) (2)/(sqrt(sqrt(5)+1))]]

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))