Home
Class 11
MATHS
" The largest real value for x such that...

" The largest real value for x such that "sum_(k=0)^(4)((5^(4-k))/((4-k)!))((x^(k))/(k!))=(8)/(3)" is - "

Promotional Banner

Similar Questions

Explore conceptually related problems

The largest real value of x such that sum_(k=0)^(4)((3^(4-k))/((4-k)!))((x^(k))/(k!))=(32)/(3) is.

The largest real value of x such that sum_(k=0)^4((3^(4-k))/((4-k)!))((x^k)/(k !))=(32)/3 is.

Find the largest real value of x such that sum_(k=0)^4((3^(4-k))/((4-k)!))((x^k)/(k !))=(32)/3 .

Find the largest real value of x such that sum_(k=0)^4((3^(4-k))/((4-k)!))((x^k)/(k !))=(32)/3 .

The number of real roots of equation sum_(k=1)^(oo)(x-k^(k))^(7)=0;(n>5)

Y = sum_ (k = 0) ^ (5) x ^ (k) a ^ (k-1)

Value of k' so that f(k)=int_(0)^(4)|4x-x^(2)-k|dx is minimum is-

Let X_(k) be real number such that X_(k)gtk^(4)+k^(2)+1 for 1 le k le 2018 . Denot N =sum_(k=1)^(2018)k . Consider the following inequalities: I. (sum_(k=1)^(2018)kx_(k))^(2)leN(sum_(k=1)^(2018)kx_(k)^(2)) " " II. (sum_(k=1)^(2018)kx_(k))^(2)leN(sum_(k=1)^(2018)k^(2)x_(k)^(2))

Find the value of k, if (3x-4)/((x-3)(x+k))=(1)/(x-3)+(2)/(x+k)