Home
Class 12
MATHS
Line joining vertex A of triangle ABC an...

Line joining vertex A of triangle ABC and orthocenter (H) meets the side BC in D. Then prove that
(a) `BD : DC = tan C : tan B`
(b) `AH : HD = (tan B + tan C) : tan A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, tan (B - C) + tan (C -A ) + tan (A -B) = tan (B-C) tan (C-A) tan (A -B)

In Delta Prove that tan A+tan B+ tan C =tan A tan B tan C .

in triangle ABC,tan A+tan B+tan C=

Given that A = B +C. prove that tan A - tan B - tan C = tan A tan B tan C.

If A + B + C = pi , prove that tan A+ tan B + tan C = tan A tan B tan C

In Delta ABC , tan A + tan B+ tan C=

If A + B + C =180^@ , prove that : tan A + tan B + tan C = tan A tan B tan C .

In Delta ABC , ( a )/( tan A) + ( b)/( tan B) + ( c )/( tan C) =

If A + B + C = 180^(@) , then prove that tan A + tan B + tan C = tan A tan B tan C.

If A + B + C = 180^(@) , then prove that tan A + tan B + tan C = tan A tan B tan C.