Home
Class 7
MATHS
In the formulae S(n)=(n)/(2){2a+(n-1)d} ...

In the formulae `S_(n)=(n)/(2){2a+(n-1)d}` make d as the subject
The following steps are involved in solving the above problem. Arrange them in sequential order.
(A) `(n-1)d=(2S_(n))/(n)-2a`
(B) Given, `S_(n)=(n)/(2)[2a+(n-1)d]rArrn[2a+(n-1)d]`
=`2S_(n)`
(C) `rArr d=(2)/(n-1)[(S_(n))/(n)-a]`
(D) `2a+(n-1)d=(2S_(n))/(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In the formula S=(n)/(2)[2a+(n-1)d] , make a as the subject of the formula.

(a) In the formula S_(n)=(n)/(2){2a+(n-1)d} , make d as the subject. (b) Find the value of d, when S_(n)=240,n=10, and a=6 .

a+(a+d)+(a+2d)+....+[a+(n-1)d]=(n)/(2)(2a+(n-1)d)

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)= (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

The arithmetic mean of 1,2,3,...n is (a) (n+1)/(2) (b) (n-1)/(2) (c) (n)/(2)(d)(n)/(2)+1

S_(n)=sum_(n=1)^(n)(n)/(1+n^(2)+n^(4)) then S_(10)S_(20)