Home
Class 12
MATHS
" If "i^(2)=-1" and "((1+i)/(sqrt(2)))^(...

" If "i^(2)=-1" and "((1+i)/(sqrt(2)))^(n)=((1-i)/(sqrt(2)))^(m)=1,AA n,m in N," then the minimum value of "n+m" is equal "

Promotional Banner

Similar Questions

Explore conceptually related problems

If i^(2)=-1 and ((1+i)/(sqrt2))^(n)=((1-i)/(sqrt2))^(m)=1, AA n, m in N , then the minimum value of n+m is equal to

n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

((-1+i sqrt(3))/(2))^(3 n)+((-1-i sqrt(3))/(2))^(3 n)=

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

If ((1+i)/(1-i))^(m/2)=((1+i)/(-1+i))^(n/3)=1 . Find the G.C.D. of m,n

Show that ((-1+sqrt(3)i)/(2))^(n)+((-1-sqrt(3i))/(2))^(n) is equal to 2 when n is a multiple of 3 and 3 is equal to -1 when n is any other positive integer.

If ((1+i)/(1-i))^((m)/(2))=((1+i)/(1-i))^((n)/(3))=1, (m, ninN) then the greatest common divisor of the least values of m and n is .............

If m = (1)/(3-2sqrt(2)) and n = (1)/(3+2sqrt(2)) find : (i) m^(2) (ii) n^(2) (iii) mn