Home
Class 11
MATHS
" 24.If "A" is not an integral multiple ...

" 24.If "A" is not an integral multiple of "pi" then prove that "cos A cos2A cos4A cos8A=(sin16A)/(16sin A)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos A cos 2A cos 4A cos 8A= (sin 16A)/(16 sin A) .

If A is not an integral multiple of (pi) , prove that cos A cos 2A cos 4A cos 8A =(sin 16A)/(16 sin A) Hence deduce that cos. (2pi)/(15). Cos. (4pi)/(15) .cos. (8pi)/(18). Cos. (16pi)/(15)=(1)/(16)

prove that cos x cos2x cos4x cos8x=(sin16x)/(16sin x)

If A is not an integral multipe of pi , prove that cosAcos2Acos4Acos8A=(sin16A)/(16sinA)

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

cos A * cos2A * cos4A * cos8A * cos16A * cos32A = (sin (64A)) / (64sin A)

Prove that: (cos2A+cos3A+cos4A)/(sin2A+sin3A+sin4A)= cot3A

Prove that: (cos2A+cos3A+cos4A)/(sin2A+sin3A+sin4A)= cot3A

16 sin x cosx cos 2x cos 4x cos 8x in

Prove that: (cos4A+cos3A+cos2A)/(sin4A+sin3A+sin2A)=cot3A