Home
Class 10
MATHS
(i) (1)/(sin^(2)a)-(1)/(sin^(2)B)=(cos^(...

(i) `(1)/(sin^(2)a)-(1)/(sin^(2)B)=(cos^(2) a-cos^(2) B)/(sin^(2)a*sin^(2) B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove that sin ^(2) A cos ^(2) B+cos ^(2) A sin ^(2) B+cos ^(2) A cos ^(2) B+sin ^(2) A sin ^(2) B=1

In /_ABC if cos A cos B+sin A sin B sin C=1, then the value of (sin^(2)A)/(sin^(2)B)+2(sin^(2)B)/(sin^(2)C)+(sin^(2)C)/(sin^(2)A) is equal to

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)