Home
Class 12
MATHS
If f(x) ={sin x x != n pi,n in Z 2 other...

If `f(x) ={sin x x != n pi,n in Z 2` otherwise `g(x)={x^2+1,x != 0,2 4, x=0 5, x=2` then `Lt_(x->0) g(f(x))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={sin xx!=n pi,n in Z2 otherwise g(x)={x^(2)+1,x!=0,24,x=05,x=2 then Lt_(x rarr0)g(f(x))=

If f(x)={(sinx, x != npi " and " n in Z), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

Let f(x)={sin x; where x= integer and 0 otherwise }:g(x)={(x^(2)+1;x!=0,2),(4;x=0),(5;x=2)}

If f(x)={{:(,sin x,x ne npi, n in Z),(,,2,"otherwise"):} and g(x)={{:(,x^(2)+1,x ne 0","2),(,4,x=0),(,5,x=2):}"then " underset(x to 0)"Lt" g(f(x))=

If f(x) = {{:(sin x"," x ne npi"," n = 0"," pm1"," pm2","...),(" 2, ""otherwise"):}} and g (x) ={{:(x^(2)+1"," x ne 0","2),(" 4, "x=0),(" 5, "x=2):}},"then" lim_(x to 0) g[f(x)] is ………

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

If f(x) = sin x tan x and g(x) = x^(2) then in interval x in (0, pi//2) is

Let g(x)=2f((x)/(2))+f(1-x) and f'(x)<0 in 0<=x<=1 then g(x)

If f''(x) gt 0 AA x in R, f'(4) = 0 and g(x) = f ( cot^2 x - 2 cot x + 5) , 0 lt x lt (pi)/(2) , then