Home
Class 12
MATHS
If a > b >0, with the aid of Lagr...

If `a > b >0,` with the aid of Lagranges mean value theorem, prove that `n b^(n-1)(a-b) < a^n -b^n < n a^(n-1)(a-b) , if n >1.` `n b^(n-1)(a-b) > a^n-b^n > n a^(n-1)(a-b) , if 0 < n < 1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a>b>0, with the aid of Lagranges mean value theorem,prove that nb^(n-1)(a-b) 1nb^(n-1)(a-b)>a^(n)-b^(n)>na^(n-1)(a-b),quad if 0

Using Lagrange's mean value theorem prove that, e^(x) gt 1 +x

Using Lagranges mean value theorem,prove that |cos a-cos b|<=|a-b|

Using Lagranges mean value theorem, prove that |cosa-cosb|<|a-b|dot

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Largrange's mean value theorem, prove that, b^(n)-a^(n) gt n a^(n-1)(b-a)" when " b gt a .

Using Lagrange's mean value theorem prove that, log (1+x) lt x ("when " x gt 0)