Home
Class 9
MATHS
(3a+5b)^2-4c^2...

`(3a+5b)^2-4c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Subtract 4a^(2) + 5b^(2) - 6c^(2) + 8 from 2a^(2) -3b^(2) - 4c^(2) - 5 .

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

Expand (i) (2a-5b-7c)^2 (ii) ( -3a+4b-5c)^2 (iii) ((1)/(2)a-(1)/(4)b+2)^2

If a ,b ,c are non-zero real numbers, then find the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) which is not divisible by prime number.

If a ,b ,c are non-zero real numbers, then find the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) which is not divisible by prime number.

If a ,b ,c are non-zero real numbers, then the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) is not divisible by prime number.