Home
Class 12
MATHS
" 1.Show that "lim(x rarr2)(|x-2|)/(x-2)...

" 1.Show that "lim_(x rarr2)(|x-2|)/(x-2)=-1

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(x-2)/(x+1)=

lim_(x rarr2)(f(x)-f(2))/(x-2)=

Show that lim_(x rarr2)((|x-2|)/(x-2)) does not exist

lim_(x rarr2)(x^(2)-3x+2)/(x-2)

Show that : lim_(x rarr1)(2x-1)=1

Show that lim_(x rarr0+)((2|x|)/(x)+x+1)=3

lim_(x rarr2)((e^(x)-e^(2))/(x-2))

Show that lim_(x rarr2)[(1)/(x-2)-(1)/(x^(2)-3x+2)]=

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

lim_(x rarr2)(x-2)/(sqrt(x)-sqrt(2))