Home
Class 12
MATHS
f(x)={[(8^(x)-4^(x)-2^(x)+1)/(x^(2))," i...

f(x)={[(8^(x)-4^(x)-2^(x)+1)/(x^(2))," if "x>0],[e^(x)sin x+4x+k ln4," if "x<=0]" is continuous at "x=0" then "k=

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0,then k=

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} , f(x) is continuous at x = 0, then k is

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

Consider f(x) = {{:((8^(x) - 4^(x) - 2^(x) + 1)/(x^(2))",",x gt 0),(e^(x)sin x + pi x + k log 4",",x lt 0):} Then, f(0) so that f(x) is continuous at x = 0, is

If f(x) {: (=(8^(x) - 4^(x)-2^(x)+1)/(x^(2)) ", ... " x gt 0), ( = e^(x) sin x + pix + lambda . "In 4, ... " x le 0):} is continuous at x = 0 , then : lambda =

If f(x)=[(8^x-4^x-2^x+1^2)/(x^2\ ),\ x >0e^xsinx+4x+k ln4,\ xlt=0 is continuous at x=0,\ then find the value of kdot

f(x) = {{:((36^(x) - 9^(x) - 4^(x) + 1)/(2sin^(2) ((x)/(4)) )" if " x ne 0),(k " if " x = 0):} is continuous at x = 0 then k =

If f(x)=(e^(2x)-(1+4x)^(1/2))/(ln(1-x^(2))) for x!=0, then f has

f(x)= ((e^(Kx)-1)(sin K^(2)x))/(4x^(2)),x!=0 ,f(0)=16 is continuous at x=0, then K=