Home
Class 12
MATHS
IF |x| lt 1, |y| lt 1 and x ne...

IF `|x| lt 1, |y| lt 1 ` and ` x ne y ` then the sum to infinity of the following series `(x +y) + (x^2 + xy + y^2 ) + ( x^3 +x^2 y + xy ^2 + y^3) + …` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |x|<1a n d|y|<1, find the sum of infinity of the following series: (x+y)+(x^2+x y+y^2)+(x^3+x^2y+x y^2+y^3)+

If |x|<1 and |y|<1, find the sum of infinity of the following series: (x+y)+(x^(2)+xy+y^(2))+(x^(3)+x^(2)y+xy^(2)+y^(3))+

Let's simplify:- (x + y) (x^2 -xy + y^2) + ( x - y) (x^2 + xy + y^2)

2x - y gt 1 , x - 2y lt 1

If |x|<1 and |y|<1, find the sum to infinity of the series : (x+y)+(x^2+x y+y^2)+(x^3+x^2y+x y^2+y^3)+ .......

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

Find the sum of n terms of series (x+y) + (x^2+ xy +y^2)+(x^3+x^2y+xy^2+y^3)+..................

Find the sum of n terms of series (x+y) + (x^2+ xy +y^2)+(x^3+x^2y+xy^2+y^3)+..................

Find the sum of n terms of series (x+y) + (x^2+ xy +y^2)+(x^3+x^2y+xy^2+y^3)+..................