Home
Class 12
MATHS
Let f(x) be a continuous and periodic fu...

Let `f(x)` be a continuous and periodic function such that `f(x)=f(x+T)` for all `xepsilonR,Tgt0`.If `int_(-2T)^(a+5T)f(x)dx=19(ag0)` and `int_(0)^(T)f(x)dx=2`, then find the value of `int_(0)^(a)f(x)dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(agt0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

I=int_(0)^(T)f(x)dx, then show that int_(3)^(3+3T)f(2x)dx=3I

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx .

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f(x) be a continuous periodic function with period T. Let I= int_(a)^(a+T) f(x)dx . Then

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then find the value of the definite integral int_(0)^(1)f(x)dx