Home
Class 12
MATHS
If cos alpha =(3)/(5) and cos beta =(5)/...

If `cos alpha =(3)/(5) and cos beta =(5)/(13) and alpha, beta ` are acute angles, then prove that
(a)`sin ^(2)((alpha-beta)/(2))=(1)/(65)` and
(b) `cos ^(2)((alpha+beta)/(2))=(16)/(65)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha=3/5 and cos beta = 5/13 and alpha , beta are acute angles , then prove that cos^(2)((alpha+beta)/2)=16/65

If cos alpha=tan beta and cos beta=tan alpha where alpha and beta are acute angles then sin alpha

If sin alpha=(12)/(13), cos beta =4/5 and alpha, beta are two acute angles, then Value of sin alpha cos beta +cos alpha sin beta is

If cos alpha=(3)/(5) and cos beta=(5)/(13), then cos^(2)backslash(alpha-beta)/(2)=

If sin alpha = 1/sqrt10, cos beta = 2/sqrt5 "and" alpha, beta are positive acute angles, then find the value of (alpha + beta)

If cos alpha=4/5 and cos beta =5/13, prove that cos (alpha-beta)/2=28/65.

If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + beta , alpha - beta being acute angles prove that tan 2 alpha = (63)/(16).

If cos (alpha+beta)=(4)/(5), sin (alpha-beta)=(5)/(13) and 0 lt alpha, beta lt (pi)/(2) then cos 2 alpha=

If coa alpha+cos beta=(1)/(3) and sin alpha+sin beta prove that cos((alpha-beta)/(2))=+-(5)/(24)

If cos alpha=(4)/(5) and cos beta=(5)/(13), prove that (cos(alpha-beta))/(2)=(8)/(sqrt(65))