Home
Class 12
MATHS
If A=[{:(,1,2,3),(,3,-2,1),(,4,2,1):}] t...

If `A=[{:(,1,2,3),(,3,-2,1),(,4,2,1):}]` then show that `A^(3)-23A-40I=0`

Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER ( Topper Answers March - 2015 )

    OSWAAL PUBLICATION|Exercise PART - E|4 Videos
  • SOLVED PAPER ( Topper Answers March - 2015 )

    OSWAAL PUBLICATION|Exercise PART - B|20 Videos
  • SOLVED PAPER MARCH - 2018

    OSWAAL PUBLICATION|Exercise PART - E|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

If A =[{:(1,2,3),(3,-2,1),(4,2,1):}] then show that A^(3)-23A - 40 I =0

If A=[(1,2,3),(3,-2,1),(4,2,1)] then show that A^3-23A -40 I=0 .

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .

If A = [(1,0,2),(0,2,1),(2,0,3)] , prove that A^(3) -6A^(2) + 7A + 2I = 0 .

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

Solve the following equations by matrix method. For the matrix A = [(1,1,1),(1,2,-3),(2,-1,3)] . Show that A^(3) - 6A^(2) + 5A + 11 I = 0 . Hence, find A^(-1) .

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)] , then find 2A-B .