Home
Class 12
MATHS
IF alpha and beta be the roots of ax^2+2...

IF `alpha` and `beta` be the roots of `ax^2+2bx+c=0` and `alpha+delta,beta+delta` be those of `Ax^2+2Bx+C=0` , prove that ,`(b^2-ac)/a^2=(B^2-AC)/A^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of ax^(2)+2bx+c=0 and alpha+delta,beta+delta be those of Ax^(2)+2Bx+C=0 then prove that (b^(2)-ac)/(B^(2)-AC)=((a)/(A))^(2)

If alpha, beta are the roots of ax^(2)+2bx+c=0 and alpha +delta, beta + delta are those of Ax^(2)+2Bx+C=0 , then prove that (b^(2)-ac)/(B^(2)-AC)= ((a)/(A))^(2)

alpha,beta are the roots of ax^(2)+2bx+c=0 and alpha+delta,beta+delta are the roots of A x^(2)+2Bx+C=0 , then what is (b^(2)-ac)//(B^(2)-AC) equal to ?

If alpha , beta are the roots of ax ^2+2bx +c=0 and alpha + sigma , beta + sigma are the roots of Ax^2 + 2Bx +c=0 then (b^2-ac)/(B^2-AC)=

Let alpha and beta be the roots of the equation ax^2+2bx+c =0 and alpha+gamma and beta+gamma be the roots of Ax^2+2Bx+C =0. Then prove that A^2(b^2-ac)=a^2(B^2-AC) .

Let alpha and beta be the roots of the equationa x^(2)+2bx+c=0 and alpha+gamma and beta+gamma be the roots of Ax^(2)+2Bx+C=0. Then prove that A^(2)(b^(2)-4ac)=a^(2)(B^(2)-4AC)

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

IF alpha , beta are the roots of ax^2+bx +c=0 then ((alpha )/(beta )-(beta )/( alpha ))^2 =

If alpha" and "beta are the roots of ax^(2)+bx+c=0 and alpha+k, beta+k are the roots of px^(2)+qx+r=0 , then (b^(2)-4ac)/(q^(2)-4pr)=