Home
Class 11
MATHS
If bar(a),bar(b),bar(c) are coplanar the...

If `bar(a),bar(b),bar(c)` are coplanar then the value of `|[bar(a),bar(b),bar(c)],[bar(a)*bar(a),bar(a)*bar(b),bar(a)*bar(c)],[bar(b).bar(a),bar(b)*bar(b),bar(b)*bar(c)]|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)+bar(b)+bar(c), then

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

[bar(a)" "bar(b)+bar(c)" "bar(a)+bar(b)+bar(c)]=0

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

If bar(a),bar(b)andbar(c) are any three vectors, prove that (1) [bar(a)+bar(b) bar(b)+bar(c) bar(c)+bar(a)]=2[bar(a)bar(b)bar(c)] (2) [bar(a) bar(b)+bar(c) bar(a)+bar(b)+bar(c)]=0

If bar(a),bar(b),bar(b),bar(c) are three non coplanar vectors bar(p)=(bar(b)xxbar(c))/([bar(a)bar(b)bar(c)]),bar(q)=(bar(c)xxbar(a))/([bar(a)bar(b)bar(c)]),bar(r)=(bar(a)xxbar(b))/([bar(a)bar(b)bar(c)]) then (2bar(a)+3bar(b)+4bar(c))*bar(p)+(2bar(b)+3bar(c)+4bar(a))bar(q)+(2bar(c)+3bar(a)+4bar(b))*bar(r)=

If [(bar(a)+2bar(b)+3bar(c))times(bar(b)+2bar(c)+3bar(a))].(bar(c)+2bar(a)+3bar(b))=54 , where bar(a),bar(b)&bar(c) are 3 non coplanar vectors then |[bar(a).bar(a)quad bar(a).bar(b)quad bar(a).bar(c)],[bar(b).bar(a)quad bar(b).bar(b)quad bar(b).bar(c)],[bar(c).bar(a)quad bar(c).bar(b)quad bar(c).bar(c)]|