Home
Class 11
MATHS
If int(1)/(x(x^(5)-1)(x^(5)+1))dx=A log ...

If `int(1)/(x(x^(5)-1)(x^(5)+1))dx=A log x+B log(x^(5)-1)+C log(x^(5)+1)+D` then `|A+B-C|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

" "int(1)/(log(x^(x))(log x+1))dx=

int(dx)/(x(log x-1)(log x+1))

int(dx)/(x(log x-1)(log x+1))

int(dx)/(x(log x-1)(log x+1))

int(dx)/(x(log x-1)(log x+1))

(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C

If int(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C then

int(dx)/(x(log x-1)(log x+1)

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =