Home
Class 11
PHYSICS
Two simple harmonic motions are represen...

Two simple harmonic motions are represented by the equations `y_(1)=3(sqrt(3)cos3 pi t+sin3 pi t)` and `y_(2)=6sin(6 pi t+pi/6)`having amplitude `A_(1)` and `A_(2)` ,maximum velocities `V_(1)` and `V_(2)` respectively then;

Promotional Banner

Similar Questions

Explore conceptually related problems

Two simple harmonic motions are represented by the equations y_(1)=2(sqrt(3)cos3 pi t+sin3 pi t) and y_(2)=3sin(6 pi t+pi/6)

The simple harmonic motions are represented by the equations: y_(1)=10sin((pi)/(4))(12t+1), y_(2)=5(sin3pit+sqrt(3)))

Two simple harmonic motions are represented by the equations y_(1) = 10 sin(3pit + pi//4) and y_(2) = 5(sin 3pit + sqrt(3)cos 3pit) their amplitude are in the ratio of ………… .

Two simple harmonic motions are represented by y_(1)=5 [sin 2 pi t + sqrt(3)cos 2 pi t] and y_(2) = 5 sin (2pit+(pi)/(4)) The ratio of their amplitudes is

Two simple harmonic motions are represented by the equations y_(1) = 10 sin (3pit + (pi)/(4)) and y_(2) = 5 (3 sin 3 pi t+sqrt(3) cos 3 pi t) . Their amplitudes are in the ratio of

Two simple harmonic motions are represented by the equations. y_(1)=10"sin"(pi)/(4)(12t+1),y_(2)=5(sin3pt+sqrt(3)cos3pt) the ratio of their amplitudes is

Two simple harmonic motions are represented by y_(1)=4sin(4pit+pi//2) and y_(2)=3cos(4pit) . The resultant amplitude is

Two simple harmonic motions are represented by the equations : x_1 = 5 sin (2 pi t + pi//4 ) , x_2 = 5^(2) (sin2 pi t + cos2 pi t) What is the ratio of their amplitudes ?

Two simple harmonic motion, are represented by the equations y _(1) = 10 sin ( 3 pi t + (pi)/(3)) y _(2) = 5 ( sin 3 pi t + sqrt3 cos 3 pi t ) Ratio of amplitude of y _(1) to y _(2) = x :1. The value of x is __________

A simple harmonic motion is represented by : y = 5(sin 3pi t + sqrt(3) cos 3pi t)cm The amplitude and time period of the motion are :