Home
Class 11
MATHS
Let f[-3,3]rarr R where f(x)=x^(3)+sin x...

Let `f[-3,3]rarr R` where `f(x)=x^(3)+sin x+[(x^(2)+2)/(a)], `be an odd function (where `[.]` represents greatest integer function).Then the value of `a` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: [-3,3] rarr R where f(x)= x^(3)+sin x+[(x^(2)+2)/(a)] be an odd function then value of a is where [.] represents greatest integer functions

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then

Let f:[-10,10]rarr R where f(x)=sin x+[(x^(2))/(a)] be an odd function. Then set of values of parameter a is/are ( [.] denotes greatest integer function)

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where * represents greatest integer function)

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where * represents greatest integer function)

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where * represents greatest integer function)