Home
Class 12
MATHS
" Let "U(n)=('^(n)C(0))/(1)-('^(n)C(1))/...

`" Let "U_(n)=('^(n)C_(0))/(1)-('^(n)C_(1))/(5)+('^(n)C_(2))/(9)-.........((-1)^(n)'^(n)C_(n))/(4n+1)" and the value of "(4U_(99))/(U_(100))" is "`

Promotional Banner

Similar Questions

Explore conceptually related problems

(.^(n)C_(1))/(2)-(2(.^(n)C_(2)))/(3)+(3(.^(n)C_(3)))/(4)-....+(-1)^(n+1)(n(.^(n)C_(n)))/(n+1)=

Prove that (1)/(n+1)=(nC_(1))/(2)-(2(^(n)C_(2)))/(3)+(3(^(n)C_(3)))/(4)-...+(-1)^(n+1)(n(^(n)C_(n)))/(n+1)

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)

C_(0)^(n)C_(n)^(n+1)+C_(1)^(n)C_(n-1)^(n)+C_(2)^(n)*C_(n-2)^(n-1)+.........+C_(n)^(n)*C_(0)^(1)=2^(n-1)(n+2)

(C_(0))/(2)+(C_(1))/(3)+(C_(2))/(4)+(C_(3))/(5)+.......+(C_(n))/(n+2)=(1+n*2^(n+1))/((n+1)(n+2))

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

The value of .^(n)C_(0).^(n)C_(n)+.^(n)C_(1).^(n)C_(n-1)+...+.^(n)C_(n).^(n)C_(0) is

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .