Home
Class 11
MATHS
Let f"":""RvecR be a function defined...

Let `f"":""RvecR` be a function defined by `f(x)""=""M in""{x""+""1,""|x|""+""1}` . Then which of the following is true? (1) `f(x)geq1""for""a l l""x in R""(2)""f(x)` is not differentiable at `x""=""1` (3) f(x) is differentiable everywhere (4) f(x) is not differentiable at `x""=""0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R to R be a function defined by f(x)="min" {x+1,|x|+1}. Then, which of the following is true?

Let f:R rarr R be a function defined by f(x)=M in{x+1,|x|+1}. Then which of the following is true? (1)f(x)>=1 for all x in R(2)f(x) is not differentiable at x=1 (3) f(x) is differentiable everywhere (4)f(x) is not differentiable at x=0

Let f(x) = ||x|-1| , then points where, f(x) is not differentiable is/are

Let f(x)=|x|-1|, then points where,f(x) is not differentiable is/are

If f(x)={[-3x+2,x =1]} ,then which of the following is not true (A) f'(1^(+))=1 (B) f'(1^(-))=-3 (C) f'(1^(-))=f'(1^(+))=1 (D) f is not differentiable at x=1

If f(x)={x^(3),x^(2) =1 then f(x) is differentiable at

Prove that the function f given by f(x)=|x-1|,x in R is not differentiable at x=1

Let f(x)={2x+3 for x 1 if f(x) is everywhere differentiable, prove that f(2)=-4

The function f(x)=(x)/(1+|x|) is differentiable in: