Home
Class 12
MATHS
(1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3...

`(1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!)+....=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+....=

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

(1.2)/(1!)+(2.3)/(2!)+(3.4)/(3!)+....=

The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(2)+2^(2)+3^(2)+4^2)/(4!) +.. Is

-1+(2^(2))/(2!)-(2^(3))/(3!)+(2^(4))/(4!)-....=