Home
Class 11
MATHS
Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w ...

Let `R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[]` denotes the greatest integer function, prove that `Rf=4^(2n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let R=(5sqrt(5)+11)^(2n+1) and f=R-[R] where [1 denotes the greatest integer function,prove that Rf=4^(n+1)

Let R =(5 sqrt5+11)^(2n+1) and and f=R-[R], where [ ] denotes the greatest integer function, prove that Rf=4^(2n+1) .

Let R=(5 sqrt 5+11)^(2n+1) and f=R-[R] where [] is the greatest integer function. Prove that Rf= 4^(2n+1)

Let R=(2+sqrt3)^(2n) and f=R-[R] where [ ] denotes the greatest integer function , then R(1-f)=

Let R=(5sqrt(5)+11)^(2n+1) and f=R-[R], where [ ] denotes the greater integer function, then Rf is equal to :

Let R=(5 sqrt5+11)^(2n+1) , f=R-[R] . Then Rf=

Let R=(2+sqrt(3))^(2n) and f=R-[R] where [ denotes the greatest integer function,then R(1-f) is equal to

Let R = (sqrt2+1)^(2n+1),ninN and f= R- [R], where [] denote the greatest integer function, Rf is equal to

If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest integer function, then the value of p(1-f) is equal to a. 1 b. 2 c. 2^n d. 2^(2n)