Home
Class 11
MATHS
1/n+1/(n+1)+1/(n+2)++1/(2n-1)=1-1/2+1/3-...

`1/n+1/(n+1)+1/(n+2)++1/(2n-1)=1-1/2+1/3-1/4++1/(2n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(nrarroo) [1/(n+1) + 1/(n+2) + 1/(n+3) +…+ 1/(2n)]

Evaluate lim_(nrarroo) [1/(n+1) + 1/(n+2) + 1/(n+3) +…+ 1/(2n)]

The sum of n terms of the series 5/1.2.1/3+7/2.3.1/3^2+9/3.4.1/3^3+11/4.5.1/3^4+.. is (A) 1+1/2^(n-1).1/3^n (B) 1+1/(n+1).1/3^n (C) 1-1/(n+1).1/3^n (D) 1+1/2n-1.1/3^n

The sum of n terms of the series 5/1.2.1/3+7/2.3.1/3^2+9/3.4.1/3^3+11/4.5.1/3^4+.. is (A) 1+1/2^(n-1).1/3^n (B) 1+1/(n+1).1/3^n (C) 1-1/(n+1).1/3^n (D) 1+1/2n-1.1/3^n

The sum of the series 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n-1)!1!) is = (A) 1/(n!2^n) (B) 2^n/n! (C) 2^(n-1)/n! (D) 1/(n!2^(n-1)

The sum of the series 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n-1)!1!) is = (A) 1/(n!2^n) (B) 2^n/n! (C) 2^(n-1)/n! (D) 1/(n!2^(n-1)

For all ngt=1 , prove that , (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + ……+ (1)/(n(n+1)) = (n)/(n+1)

For a positive integer n let a(n)=1+1/2+1/3+1/4+.......+1/((2^n)-1) then

For a positive integer n let a(n)=1+1/2+1/3+1/4+….+1/ ((2^n)-1) Then