Home
Class 11
MATHS
P(z)is the point moving in the Argand's ...

P(z)is the point moving in the Argand's plane satisfying `arg(z-1)-arg(z +i)=pi` then, Pis (A) a real number, hence lies on the real axis. (B) an imaginary number, hence lies on the imaginary axis. (C) a point on the hypotenuse of the right angled triangle OAB formed byO= (0,0); A=(1, 0); (D)a point on an arc of the circle passing through A = (1 , 0); B = (0,-1 ).

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z=x+iy and a point P represent z in the Argand plane. If the real part of (z-1)/(z+i) is 1, then a point that lies on the locus of P is

The locus of any point P(z) on argand plane is arg((z-5i)/(z+5i))=(pi)/(4) . Total number of integral points inside the region bounded by the locus of P(z) and imaginery axis on the argand plane is

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If |z^(2)-1|=|z|^(2)+1, then z lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

If 1z^(2)-1|=|z|^(2)+1, then z lies on (1)An ellipse (3)A circle 89.(2) The imaginary axis (4) The real axis

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these