Home
Class 12
MATHS
If alpha and beta are the roots of the e...

If `alpha` and `beta` are the roots of the equation `ax^(2)+bx+c=0" then "int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation ax^(2)+bx+c=0 then (alpha+beta)^(2) is …………..

If alpha and beta are the roots of the equation ax^(2)+bx+c=0, then the value of alpha^(3)+beta^(3)

If alpha and beta are thr roots of the equation ax^(2) + bx + c = 0 then ( alpha + beta )^(2) is ……… .

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 , a!=0 then alpha+beta =

If alpha, beta are roots of ax^(2)+bx+c=0 , then : int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

If alpha,beta are the roots of the quadratic equation ax^(2)+bx+c=0 then alpha beta =

IF alpha and beta be the roots of the equation ax^2+bx+c=0 , find the values of alpha^2+beta^2

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

If alpha,beta are the roots of the equation ax^(2)+bx+c=0, then prove that (alpha)/(beta)+(beta)/(alpha)=(b^(2)-2ac)/(ac)