Home
Class 12
MATHS
underset( x rarr 0 ) ( "lim")( x tan 2x ...

`underset( x rarr 0 ) ( "lim")( x tan 2x - 2x ta n x )/(( 1- cos 2x)^(2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(x rarr 0)(lim) (2x)/(tan 2x) is

lim_(x rarr 0) (x tan 2x - 2x tan x)/((1 - cos 2x)^(2)) is :

lim_(x rarr0)((x tan2x-2x tan x)/((1-cos2x)^(2))) is equal to

If underset( x rarr0 )("lim")((sin nx) [ ( a-n ) nx - 2 tan x])/( x^(2))=0 then value of a=

underset( x rarr 0 ) ("lim") ( cos mx )^(n//x^(2))

underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) is equal to :

The limit underset( x rarr0 ) ( "lim") ( 1- cos x sqrt( cos 2x) )/( x^(2)) is equal to

the value of lim_(x rarr0)(x tan2x-2x tan x)/((1-cos2x)^(2)) is equal to

underset(x rarr 0)(lim) (cos 4x - 4 cos 2x + 3)/(x^(4)) =