Home
Class 12
MATHS
sin(cos^(-1)x)=...

`sin(cos^(-1)x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Select the correct answer : sin(cos^-1x) =

Prove that the identities, sin^-1 cos(sin^-1x)+cos^-1 sin(cos^-1x)=pi/2 , |x|<=1

The value of sin^-1(cos(sin^-1x))+cos^-1(sin(cos^-1x)) where absx le 1 , is

sin (sin ^ (- 1) + cos ^ (- 1) x) =

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

int (sin^(-1) x -cos^(-1)x)/(sin^(-1) x + cos^(-1)x) dx =

int (sin^(-1)x - cos^(-1)x)/(sin^(-1)x + cos^(-1)x)dx =

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=

The value of cos(sin^(-1)x+cos^(-1)x) is equal to