Home
Class 12
MATHS
If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) ...

If `sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0` then x belongs to the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

if cos^(-1)x>sin^(-1)x, then x belongs to the interval

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

Show that sin^(-1)(2xsqrt(1-x^(2))) = 2sin^(-1)x ,

If Cos^(-1)x gt Sin^(-1)x , then x belongs to the interval

Prove that sin^-1(2xsqrt(1-x^2))=2sin^-1x

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

Show that "sin"^(-1)(2xsqrt(1-x^(2)))=2"sin"^(-1)x .

int(1)/(sin^(-1)xsqrt(1-x^(2)))dx