Home
Class 12
MATHS
If y= log (secx+tan x ) ,then (dy)/(dx)...

If ` y= log (secx+tan x ) ,then (dy)/(dx) `

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(sec x+tan x), then (dy)/(dx)=

If y = log (sec x + tan x), then dy/dx =

If y=log(secx+tanx) , then dy/dx=

If y = log(tan 5x) , then find (dy)/(dx)

If y= log tan x + log cotx , then (dy)/(dx) is

If y= e^(log (log x )) ,then (dy)/(dx) =

If y= log (tan x) , then dy/dx is:

If y=log (log ( log x)) ,then (dy)/(dx)

Consider the following statements I. If y=ln(secx+tanx) . then (dy)/(dx)=secx II. If y=ln("cosec"x-cotx) . then (dy)/(dx)="cosec"x Which of the above statements is/are correct ?