Home
Class 12
MATHS
Prove that : int(0)^(pi//2) (sin x -cos ...

Prove that : `int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(pi)/(16)

int_(0)^(pi//4) (sin^(2) x cos^(2) x)/((sin^(3) x + cos^(3)x)^(2))dx=

Prove that int_(0)^(pi//2) (sin x -cos x)/(1+sin x cos x)dx = 0 .

Prove that : int_(0)^(pi//2) (sin^(3)x)/(sin^(3) x+ cos^(3)x)dx =(pi)/(4)

Prove that : int_(0)^(pi//2) (sin^(3)x)/(sin^(3) x+ cos^(3)x)dx =(pi)/(4)

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

Prove that : int_(0)^(pi//2) (sin x-cos x)/(1+sin x cos x)dx=0 " (ii) Prove that " : int_(0)^(pi//2) sin 2x. log (tan-x) dx=0

int_(0)^(pi) dx/(3+2sin x + cos x) =