Home
Class 12
MATHS
Let f(x)=ax^2 + bx+c whose roots are a...

Let `f(x)=ax^2 + bx+c` whose roots are `alpha` and `beta` ,` a ne 0` and `triangle=b^2-4ac`. If `alpha + beta , alpha^2 + beta^2 ` and `alpha^3 + beta^3` are in GP then :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac . If alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3) are in GP, then

Let f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac . If alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3) are in GP, then

Let f (x)=a x^(2)+b x+c , a ne 0 and Delta=b^(2)-4 a c . If alpha+beta, alpha^(2)+beta^(2) and alpha^(3)+beta^(3) are in G.P, then

If alpha , beta are the roots of ax ^2-2bx + c=0 then alpha ^3 beta ^3 + alpha ^2 beta ^3 + alpha ^3 beta ^2 =

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0 and delta=b^2-4a cdot If alpha+beta,alpha^2+beta^2alpha^3+beta^3 are in G.P. Then a. =0 b. !=0 c. b =0 d. c =0

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0 and delta=b^2-4a cdot If alpha+beta,alpha^2+beta^2alpha^3+beta^3 are in G.P. Then a. =0 b. !=0 c. b =0 d. c =0

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0and Delta =b^2-4ac cdotIfalpha+beta,alpha^2+beta^2,alpha^3+beta^3 are in G.P. Then a. Delta!=0 b. bDelta=0 c. cDelta =0 d. Delta =0