Home
Class 12
MATHS
Consider three vectors p=hat(i)+hat(j)+h...

Consider three vectors `p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k)` and let s be a unit vector, then
Q. If `(ptimesq)timesr=up+vq+wr`, then (u+v+w) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. The magnitude of the vector (p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq) is

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. The magnitude of the vector (p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq) is

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. The magnitude of the vector (p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq) is

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors -hat(i) + hat(j) - hat(k), hat(i) + hat(j) + hat(k) and hat(i) + hat(k) are coplanar.

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

Consider three vectors vec p=hat i+hat j+hat k,vec q'=2hat i+4hat j-hat k and vec r=hat i+hat j+3hat k and let vec s be a unit vector,then vec p,vec q and vec r are