Home
Class 11
MATHS
If x^4-4x^3+2x^2-4x+1=0 then x is...

If `x^4-4x^3+2x^2-4x+1=0` then x is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |1xx^2xx^2 1x^2 1x|=, then find the value of |x^3-1 0x-x^4 0x-x^4x^3-1x-x^4x^3-1 0|

If |1xx^2xx^2 1x^2 1x|=, then find the value of |x^3-1 0x-x^4 0x-x^4x^3-1x-x^4x^3-1 0|

If -1+i is a root of x^(4)+4x^(3)+5x^(2)+2x+k=0 then k=

If x - 1 is a factor of x^(5) - 4x^(3) +2 x^(2) - 3x + k = 0 then k is

x^(4)-4x^(3)+6x^(2)-4x+1=0 The roots of the equation are

Solve : x^4+4x^3+5x^2+4x+1=0

The biquadratic equation, two of whose roots are 1+i , 1-sqrt(2) is A) x^(4)-4x^(3)+5x^(2)-2x-2=0 B) x^(4)-4x^(3)-5x^(2)+2x+2=0 C) x^(4)+4x^(3)-5x^(2)+2x-2=0 D) x^(4)+4x^(3)+5x^(2)-2x+2=0

The equation x^(4) -2x^(3) - 3x^(2) + 4x-1=0 has four distinct real roots x_1,x_2,x_3,x_4 such that x_1 lt x_2 lt x_3 lt x_4 and product of two roots is unity , then : x_1x_2+x_1x_3 + x_2x_4+x_3x_4 is equal to :