Home
Class 12
MATHS
If x^(1/3)+y^(1/3)+y^(1/3)=0 then(x+y+z)...

If `x^(1/3)+y^(1/3)+y^(1/3)=0 `then`(x+y+z)^3-27x y z=`

Promotional Banner

Similar Questions

Explore conceptually related problems

if x^(1//3)+y^(1//3)-z^(1//3)=0 , then {(x+y-z)^3+27 xyz} is equal to

If x^(1/3)+y^(1/3)=z^(1/3), then {(x+y-z)^(3)+27xyz} equals a.0 b.-1 c. 1d.27

If x^(1/3)+y^(1/3)+z^(1/3)=0 , then prove that (x+y+z)^3=27xyz

If x^(1//3) + y^(1//3) + z^(1//3) = 0 , then the value of (x + y + z)^3 is :

If x^(1//3)+ y ^(1//3)+z^(1//3)= 0 " then what is "(x+y+ z)^(3) equal to ?

If x^((1)/(3)) + y^((1)/(3)) + z^((1)/(3)) = 0 , then prove that (x + y + z)^(2) = 27 xyz

If x^((1)/(3))+y^((1)/(3))+z^((1)/(3))=0;x+y+z=